State-Space Approaches to Complex Structures in Aerospace

Author:

Zhao Zinan,Shen Xudong,Su Yipin,Chen Weiqiu

Abstract

The state-space approach (SSA), traditionally utilized in modern control theory, has been successfully adopted over the last three decades to investigate the mechanical behaviors of complex structures composed of composite or smart materials. This is largely due to their increasing application across various fields, including aerospace, civil and marine engineering, and transportation vehicles. This paper provides a comprehensive review of the establishment of state-space formulations for structures of typical configurations, such as beams, plates, shells, and trusses, with a particular focus on their applications in the mechanical analyses of various complex aerospace or smart structures using the transfer matrix method. The paper first summarizes the three-dimensional SSAs applied to laminated structures without any assumptions on physical fields. By employing structural theories such as various beam, plate, and shell theories, simplified one-dimensional and two-dimensional SSAs for laminated structures are developed. The paper then outlines the advances in generating analytical solutions for the mechanical behaviors of laminated structures. For the sake of completeness, the paper also provides an account of SSAs applied to complex periodic structures, particularly in beam and truss forms. To overcome the limitations of conventional SSAs related to structures with specialized geometric configuration or under arbitrary boundary conditions, state-space based numerical methods have been proposed, for example, the state-space based differential quadrature method and state-space based finite-element method. The applications of these methods in the analyses of static and dynamic responses of complex structures are extensively reviewed. It is observed that there are still intriguing and potential research topics for the development of advanced SSAs with enhanced versatility and the studies on practical complex structures used in modern engineering, particularly in aerospace industry. Therefore, this review is expected to be beneficial for researchers in the fields of analytical and numerical methods, composite structures, aerospace, structural engineering, and more.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

National Postdoctoral Program for Innovative Talents

China Postdoctoral Science Foundation

Publisher

Frontiers Media SA

Reference245 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3