Cloth manipulation based on category classification and landmark detection

Author:

Gustavsson Oscar12,Ziegler Thomas32,Welle Michael C1ORCID,Bütepage Judith1,Varava Anastasiia1,Kragic Danica1

Affiliation:

1. KTH Royal Institute of Technology, Stockholm, Sweden

2. Oscar Gustavsson and Thomas Ziegler contributed equally to this article.

3. ETH (Eidgenössische Technische Hochschule) Zürich, Zürich, Switzerland

Abstract

Cloth manipulation remains a challenging problem for the robotic community. Recently, there has been an increased interest in applying deep learning techniques to problems in the fashion industry. As a result, large annotated data sets for cloth category classification and landmark detection were created. In this work, we leverage these advances in deep learning to perform cloth manipulation. We propose a full cloth manipulation framework that, performs category classification and landmark detection based on an image of a garment, followed by a manipulation strategy. The process is performed iteratively to achieve a stretching task where the goal is to bring a crumbled cloth into a stretched out position. We extensively evaluate our learning pipeline and show a detailed evaluation of our framework on different types of garments in a total of 140 recorded and available experiments. Finally, we demonstrate the benefits of training a network on augmented fashion data over using a small robotic-specific data set.

Funder

H2020 European Research Council

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Standardization of Cloth Objects and its Relevance in Robotic Manipulation;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

2. A Virtual Reality Framework for Human-Robot Collaboration in Cloth Folding;2023 IEEE-RAS 22nd International Conference on Humanoid Robots (Humanoids);2023-12-12

3. Research on the Clothing Classification of the She Ethnic Group in Different Regions Based on FPA-CNN;Applied Sciences;2023-08-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3