Risk analysis and optimization for communication transmission link interruption in Smart Grid cyber-physical system

Author:

Chen Xingyu1,Zhao Puyuan1ORCID,Yu Peng1,Liu Baoju1,Li Wenjing1,Xie Yingjun2,Chen Xiangzhou2,Yuan Mengying2

Affiliation:

1. State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, People’s Republic of China

2. China Electric Power Research Institute, Beijing, People’s Republic of China

Abstract

Since the communication network of the cyber-physical power system is responsible for communicating information, which guarantees the operation of the cyber-physical power system, researchers focus on the stability of the communication system. This article analyzes the risk of the communication transmission link interruption based on the network structure and characteristics of service transmission and proposes a path optimization method. First, we analyze the impact of link disruption on network structure and service, respectively, and quantify the impact as link interruption risk. According to the risk analysis, we propose an optimization method utilizing the Dijkstra’s algorithm and the genetic algorithm to reconfigure service paths, which aims to minimize time delay and realize the equilibrium of service distribution. Through a particular situation, we calculate the link interruption risk and use the optimization method to configure service path for affected service. The results show that the time delays of the optimized service paths are in the acceptable level as well as the balance index of the service distribution is decreased obviously. The simulation experiment reveals the operability of the risk analysis method and the effectiveness of the path optimization method, which provides a technical reference for risk analysis and service path configuration.

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3