Impact Damage Modes and Residual Flexural Properties of Composites Beam

Author:

He Chenghong 1,Li Yubin 2,Zhang Zuoguang 1,Sun Zhijie 1

Affiliation:

1. School of Materials Science and Engineering Beijing University of Aeronautics and Astronautics, Beijing 100083, PR China

2. School of Materials Science and Engineering Beijing University of Aeronautics and Astronautics, Beijing 100083, PR China,

Abstract

The damage evolutions under low velocity impact were investigated using epoxy composite beams reinforced by S-2 glass, basalt, and Twaron 1000 fiber (identified as GFRP, BaFRP, and AFRP, respectively). GFRP showed a mutational damage mode, while BaFRP and AFRP represented a progressive one. The damage modes, the reductions in flexural strength and modulus in the direction of the impact face and the back face were compared based on the difference in fiber properties combined with fractography. The dominant factors for damage evolution were analyzed. There existed critical impact energy for initial damage, standing for the change in damage mode and dividing the post-impact flexural properties variation into two linear parts.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3