Advances in Embedded Sensor Technologies for Impact Monitoring in Composite Structures

Author:

Carani Lucas Braga1,Humphrey Johnson2ORCID,Rahman Md Mostafizur2ORCID,Okoli Okenwa I.12

Affiliation:

1. High-Performance Materials Institute, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA

2. Department of Mechanical Engineering, Herff College of Engineering, The University of Memphis, Memphis, TN 38152, USA

Abstract

Embedded sensor technologies have emerged as pivotal tools in redefining structural health monitoring (SHM) within composite materials, addressing a critical need in the composite structure industry. Composites, by their layered nature, are particularly vulnerable to internal delamination and micro-cracks from impacts, which can propagate and lead to catastrophic failures. Traditional inspection methods often fail to detect internal damage and these undetected damages can lead to reduced performance and potential system failures. Embedded sensors offer a solution capable of detecting a spectrum of damages, from barely visible impact damages (BVID) and subtle low-energy impacts to pronounced impact-related deformations, all in real-time. Key sensors, such as Piezoelectric transducers (PZTs), Fiber Bragg Gratings (FBGs), and other potential sensors, have been discussed as potential detection techniques in this review. This review discusses a comprehensive picture of the progress and current scenario of different embedded sensors for SHM of composite structures. The growth of embedded sensor technologies, current limitations, and future requirements focusing on sensor materials have been discussed in this review. Finally, challenges and opportunities for the development of a sustainable SHM system have been discussed in this paper.

Funder

NSF REU RETREAT

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3