A Machine Learning-Driven Wireless System for Structural Health Monitoring

Author:

POP Marius1,TUDOSE Mihai2,VISAN Daniel3,BOCIOAGA Mircea4,BOTAN Mihai5,BANU Cesar6,SALAORU Tiberiu7

Affiliation:

1. INCAS – National Institute for Aerospace Research “Elie Carafoli”, Iuliu Maniu 220, S6, PC 061126, Bucharest, Romania, pop.marius@incas.ro

2. INCAS – National Institute for Aerospace Research “Elie Carafoli”, Iuliu Maniu 220, S6, PC 061126, Bucharest, Romania, tudose.mihai@incas.ro

3. INCAS – National Institute for Aerospace Research “Elie Carafoli”, Iuliu Maniu 220, S6, PC 061126, Bucharest, Romania, visan.daniel@incas.ro

4. INCAS – National Institute for Aerospace Research “Elie Carafoli”, Iuliu Maniu 220, S6, PC 061126, Bucharest, Romania, bocioaga.mircea@incas.ro

5. INCAS – National Institute for Aerospace Research “Elie Carafoli”, Iuliu Maniu 220, S6, PC 061126, Bucharest, Romania, botan.mihai@incas.ro

6. INCAS – National Institute for Aerospace Research “Elie Carafoli”, Iuliu Maniu 220, S6, PC 061126, Bucharest, Romania, banu.cesar@incas.ro

7. INCAS – National Institute for Aerospace Research “Elie Carafoli”, Iuliu Maniu 220, S6, PC 061126, Bucharest, Romania, salaoru.tiberiu@incas.ro

Abstract

The paper presents a wireless system integrated with a machine learning (ML) model for structural health monitoring (SHM) of carbon fiber reinforced polymer (CFRP) structures, primarily targeting aerospace applications. The system collects data via carbon nanotube (CNT) piezoresistive sensors embedded within CFRP coupons, wirelessly transmitting these data to a central server for processing. A deep neural network (DNN) model predicts mechanical properties and can be extended to forecast structural failures, facilitating proactive maintenance and enhancing safety. The modular design supports scalability and can be embedded within digital twin frameworks, offering significant benefits to aircraft operators and manufacturers. The system utilizes an ML model with a mean absolute error (MAE) of 0.14 on test data for forecasting mechanical properties. Data transmission latency throughout the entire system is less than one second in a LAN setup, highlighting its potential for real-time monitoring applications in aerospace and other industries. However, while the system shows promise, challenges such as sensor reliability under extreme environmental conditions and the need for advanced ML models to handle diverse data streams have been identified as areas for future research.

Publisher

INCAS - National Institute for Aerospace Research Elie Carafoli

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3