An Artificial Neural Networks approach to predict low-velocity impact forces in an elastomer material

Author:

Rodríguez-Sánchez Alejandro E1ORCID

Affiliation:

1. Engineering Division, Irapuato-Salamanca Campus, Department of Mechanical Engineering, University of Guanajuato, Mexico

Abstract

The study of the impact phenomenon on rubber-like materials has been traditionally related to lumped parameter modeling or discrete Finite Element models that require experimentation associated with the material behavior at a level of constitutive modeling, and additional testing to validate their operation in case of engineering applications. This article presents an Artificial Neural Network approach to predict and simulate the low-velocity impact force in a thermoplastic elastomer material. Neural network models were trained and validated with experimental data obtained from impact tests in a modified Charpy apparatus. An experimental setup and a data acquisition procedure were set out to record the impact forces on elastomer specimens. The coefficient of determination R2, the Root Mean Square Error, and the Maximum Absolute Error measures were implemented as error functions to evaluate the performance of the neural networks regarding experimental data. Results show that the proposed method helps to predict and derive impact force curves within the range of the training data, since errors below 1% regarding experimental values were obtained. The results also demonstrate that the neural networks can simulate impact force curves within the range of the experimental values without the need to involve parameters of material strain-rate sensitivity. In addition, the approach was tested in another material, and the corresponding results show good prediction capabilities since errors below 1% were obtained. Therefore, it is concluded that the presented artificial neural models, and the approach, could be useful to create solution spaces for low-velocity impact responses of thermoplastic elastomers.

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modeling and Simulation,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3