Nonlinear modeling and prediction of forklift acoustic annoyance based on the improved neural networks

Author:

Zhang Enlai12ORCID,Lian Jiading2,Zhang Jingjing3,Lin Jiahe4

Affiliation:

1. School of Mechanical and Automotive Engineering, Xiamen University of Technology, China

2. Chengyi University College, Jimei University, China

3. College of Applied Science and Technology, Hainan University, China

4. Department of Mechanical and Electrical Engineering, Xiamen University, China

Abstract

Aiming at the characteristics of high decibels and multiple samples for forklift noise, a subjective evaluation method of rank score comparison (RSC) based on annoyance is presented. After pre-evaluation, comprehensive evaluation and data tests on collected 50 noise samples, the annoyance grades of all noise samples were obtained, and seven psycho-acoustic parameters including linear sound pressure level (LSPL), A-weighted sound pressure level (ASPL), loudness, sharpness, roughness, impulsiveness and articulation index (AI) were determined by correlation calculation. Considering the nonlinear characteristics of human ear subjective perception, objective parameters, and annoyance were used as input and output variables correspondingly and then three nonlinear mathematical models of forklift acoustic annoyance were established using traditional artificial neural network (ANN), genetic-algorithm neural network (GANN), and particle-swarm-optimization neural network (PSONN). Moreover, the prediction accuracy of the three models was tested and compared by sample data. The results indicate that the average relative error (ARE) between the experimental and predicted values of acoustic annoyance based on PSONN model is 3.893%, which provides an effective technical support for further optimization and subjective evaluation.

Funder

National Natural Science Foundation of China

Doctoral Scientific Research Foundation of Chengyi University College

Xiamen Youth Innovation Foundation

Outstanding Young Scientific Research Talents Cultivation Plan of Fujian Universities

Key Project of Research and Development in Hainan Province

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modeling and Simulation,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3