Crush dynamics of rubber tube under low velocity impact

Author:

Zhang ZH12,Chen Y12,Hua HX12,Wang Y3

Affiliation:

1. Institute of Vibration, Shock and Noise, Shanghai Jiao Tong University, Shanghai, People's Republic of China

2. State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, People's Republic of China

3. Naval Research Center, Beijing, People's Republic of China

Abstract

It is proved that hyperelastic honeycomb coatings can attenuate underwater blast loads impinged on the ship hull. The crush behavior of a unit tube cell of the coating made of rubber material is investigated in this study. A series of tests are conducted to investigate the crush dynamic behavior of the tube under low velocity impact loads. Numerical analyses are carried out to explore the impact process of the rubber tube and the role of some dynamic parameters, thereby serve as a reference in the design of new coating. Some characteristics, such as the geometric imperfections, nonlinear elasticity and material viscosity, are analyzed. The results of simulation and experiments show that the geometric imperfections not only attenuate the shock force in the buckling and the force plateau stages, but also enhance the shock force in the densification stage greatly and promote the global peak force initiation, while the material viscosity enhances the force plateau and attenuates the shock force in the densification stage greatly. These effects are illustrated and quantified with the aid of experiments and numerical calculations.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3