An efficient method for predicting wheel-rail forces in coupled nonlinear train-track-bridge system using artificial neural networks
Author:
Affiliation:
1. School of Civil Engineering, Changsha University of Science & Technology, Changsha, China
2. School of Civil Engineering, Southwest Jiaotong University, Chengdu, China
3. School of Transportation, Southeast University, Nanjing, China
Abstract
Funder
China Postdoctoral Science Foundation
Natural Science Foundation of Hunan Province
Innovative Research Group Fund of Hunan Natural Science Foundation
Science and Technology Innovation Program of Hunan Province
National Natural Science Foundation of China
Publisher
SAGE Publications
Subject
Building and Construction,Civil and Structural Engineering
Link
http://journals.sagepub.com/doi/pdf/10.1177/13694332231156989
Reference36 articles.
1. Nonlinear System Identification
2. Dynamic analysis of three-dimensional bridge–high-speed train interactions using a wheel–rail contact model
3. Predictions of vertical train-bridge response using artificial neural network-based surrogate model
4. Recent developments of high-speed railway bridges in China
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An efficient dynamic reliability method for maglev vehicle-bridge systems and its application in random controller parameters analysis;Journal of Low Frequency Noise, Vibration and Active Control;2024-09-08
2. Research on inversion of wheel-rail force based on neural network framework;Engineering Structures;2024-04
3. A fast hybrid algorithm for the random vibration analysis of train-bridge systems under crosswinds;Engineering Structures;2024-01
4. Wheel-Rail Force Inversion Via Transfer Learning-Based Residual Lstm Neural Network with Temporal Pattern Attention Mechanism;2024
5. A deep learning-based interferometric synthetic aperture radar framework for abnormal displacement deformation prediction of bridges;Advances in Structural Engineering;2023-10-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3