An efficient dynamic reliability method for maglev vehicle-bridge systems and its application in random controller parameters analysis

Author:

Wang Lidong12ORCID,Li Qingrong1,Zhang Xun3,Bu Xiumeng1,Hu Peng12,Han Yan12

Affiliation:

1. School of Civil Engineering, Changsha University of Science & Technology, Changsha, China

2. Key Laboratory of Safety Control of Bridge Engineering, Ministry of Education (Changsha University of Science & Technology), Changsha, China

3. Civil Engineering and Transportation Engineering, Yellow River Conservancy Technical Institute, Kaifeng, China

Abstract

This article presents an efficient method for analyzing the dynamic reliability of maglev vehicle-bridge coupled systems by combining a theoretical model with an adaptive surrogate model and the probability density evolution method (PDEM). First, a refined theoretical model of a maglev vehicle-bridge coupling system is established. Next, an adaptive surrogate model of the equivalent extreme value of the system dynamic response is established by combining an adaptive sampling method with radial basis functions. Finally, the adaptive surrogate model and PDEM are combined to further improve the efficiency of the dynamic reliability analysis. In the numerical example, the theoretical model of the maglev vehicle-guideway system was first validated by comparing with the measured data from the Shanghai high-speed maglev line. Then, by treating the controller parameters as normally distributed random variables, the accuracy and efficiency of the proposed reliability method were verified through comparison with the Monte Carlo method and the one-stage sampling surrogate model. Additionally, the impact of the randomness of each controller parameter and the coefficient of variation of the controller parameters on the system’s dynamic reliability was discussed.

Funder

Scientific Research Fund of Hunan Provincial Education Department

Postgraduate Scientific Research Innovation Project of Changsha University of Science & Technology

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Natural Science Foundation of Hunan Province

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3