Bivariate Random Effects Meta-Analysis of ROC Curves

Author:

Arends L.R.1,Hamza T.H.2,van Houwelingen J.C.3,Heijenbrok-Kal M.H.4,Hunink M.G.M.5,Stijnen T.2

Affiliation:

1. Department of Epidemiology & Biostatistics, Erasmus Medical Center, Rotterdam, The Netherlands, Institute of Psychology, Erasmus University Rotterdam, Rotterdam, The Netherlands,

2. Department of Epidemiology & Biostatistics, Erasmus Medical Center, Rotterdam, The Netherlands

3. Department of Medical Statistics, Leiden University Medical Center, Leiden, The Netherlands

4. Department of Epidemiology & Biostatistics, Erasmus Medical Center, Rotterdam, The Netherlands, Department of Radiology, Erasmus Medical Center, Rotterdam, Netherlands

5. Department of Epidemiology & Biostatistics, Erasmus Medical Center, Rotterdam, The Netherlands, Department of Radiology, Erasmus Medical Center, Rotterdam, Netherlands, Department of Health Policy & Management, Harvard School of Public Health, Boston, Massachusetts

Abstract

Meta-analysis of receiver operating characteristic (ROC)-curve data is often done with fixed-effects models, which suffer many shortcomings. Some random-effects models have been proposed to execute a meta-analysis of ROC-curve data, but these models are not often used in practice. Straightforward modeling techniques for multivariate random-effects meta-analysis of ROC-curve data are needed. The 1st aim of this article is to present a practical method that addresses the drawbacks of the fixedeffects summary ROC (SROC) method of Littenberg and Moses. Sensitivities and specificities are analyzed simultaneously using a bivariate random-effects model. The 2nd aim is to show that other SROC curves can also be derived from the bivariate model through different characterizations of the estimated bivariate normal distribution. Thereby the authors show that the bivariate random-effects approach not only extends the SROC approach but also provides a unifying framework for other approaches. The authors bring the statistical meta-analysis of ROC-curve data back into a framework of relatively standard multivariate meta-analysis with random effects. The analyses were carried out using the software package SAS (Proc NLMIXED).

Publisher

SAGE Publications

Subject

Health Policy

Cited by 260 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3