An experimentally validated numerical model of indentation and abrasion by debris particles in machine-element contacts considering micro-hardness effects

Author:

Nikas George K1

Affiliation:

1. Mechanical Engineering Department, Imperial College London, UK

Abstract

Indentation and abrasion of machine-element contacts by solid contamination particles is a major problem in many industries and manufacturing processes involving the automotive, aerospace, medical and electronics industries among others. Published theoretical studies on indentation and soft abrasion of surfaces by ductile debris particles other than those of the author are based on several major simplifications concerning material properties, hardness, plasticity modelling, interfacial friction, kinematic conditions, etc. None of the studies published in the literature to date (2011) have those simplifications concurrently relaxed. In view of the shortcomings of existing numerical models on debris particle indentation and abrasion, and given the importance of dent geometry and size on fatigue life of machine elements, a greatly improved numerical model has been developed based on the previous studies of the author. The new model deals with elastoplastic indentation and abrasion of rolling–sliding, dry and lubricated contacts by spherical particles of any hardness, from very soft (e.g. 40 HV) to very hard (e.g. over 1000 HV), including harder than the contact counterfaces. The model incorporates strain-hardening and strain-gradient or indentation-size micro-hardness effects with an expanding-cavity plasticity model, a localised treatment of friction, generalised boundary and kinematic conditions involving localised stick and slip of the particle, linear and nonlinear work-hardening models of the particle, a basic approach on pile-up/sink-in plasticity effects and several other improvements. The model has passed extensive validation tests and found to give realistic predictions that are quantitatively quite close to the experimental results published by independent researchers in the literature concerning dent dimensions and slope. Moreover, it has verified and explained theoretically for the first time the formation of dimples inside and outside dents experimentally observed in rolling and rolling–sliding contacts. This article presents the mathematics of the model, the validation procedure with several real cases from the experimental literature, and a parametric study to show the model’s predictions on precise dent geometry in several realistic cases.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tribological considerations of threaded fastener friction and the importance of lubrication;Tribology International;2024-03

2. Approximate analytical solution for the pile-up (lip) profile in normal, quasi-static, elastoplastic, spherical and conical indentation of ductile materials;International Journal of Solids and Structures;2022-01

3. A Coupled Euler-Lagrange Model for More Realistic Simulation of Debris Denting in Rolling Element Bearings;Tribology Transactions;2019-07-11

4. Particle extrusion in elastohydrodynamic line contacts: Dynamic forces and energy consumption;Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology;2017-02-16

5. Particle entrapment and indentation process in rolling bearings;Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology;2016-08-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3