Modulation signal bispectrum with optimized wavelet packet denoising for rolling bearing fault diagnosis

Author:

Guo Junchao1,Shi Zhanqun1,Zhen Dong1ORCID,Meng Zhaozong1,Gu Fengshou2,Ball Andrew D2

Affiliation:

1. Tianjin Key Laboratory of Power Transmission and Safety Technology for New Energy Vehicles, School of Mechanical Engineering, Hebei University of Technology, Tianjin, China

2. Centre for Efficiency and Performance Engineering, University of Huddersfield, Huddersfield, UK

Abstract

Transient impulses caused by local faults are critical informative indicators for rolling element bearing fault diagnosis. The methods for accurately extracting transient impulses while suppressing strong background noise and interference components have received extensive studies. In this article, a novel fault diagnosis scheme based on optimized wavelet packet denoising and modulation signal bispectrum is proposed, which takes advantage of the transient impulse enhancement of wavelet packet denoising and the demodulation ability of modulation signal bispectrum to diagnose bearing faults more accurately. First, the measured signals are decomposed into a series of time–frequency subspaces using wavelet packet transform. An optimal threshold value is selected based on the proposed threshold criterion by considering unbiased autocorrelation of envelope and Gini index of the transient impulses. Subsequently, the subspaces are denoised by the wavelet packet denoising with the optimized threshold value, and the master subspaces that containing the fault-related transient impulses are selected based on the Gini index indicator. Finally, the modulation signal bispectrum is utilized to further purify the signal and extract the modulation components contained in the transient impulses, and the suboptimal modulation signal bispectrum slices are selected based on the characteristic frequency intensity coefficient. The modulation signal bispectrum detector is then obtained by averaging the suboptimal modulation signal bispectrum slices to determine the type of the bearing faults. The proposed wavelet packet denoising-modulation signal bispectrum is validated based on the simulation and experimental studies. Compared with the variational mode decomposition and Teager energy operator, fast kurtogram as well as conventional modulation signal bispectrum, the proposed wavelet packet denoising-modulation signal bispectrum method has superior performance in extracting the fault feature of the incipient defects on different bearing components.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3