Health condition identification for rolling bearing using a multi-domain indicator-based optimized stacked denoising autoencoder

Author:

Yan Xiaoan12ORCID,Liu Ying1,Jia Minping2

Affiliation:

1. School of Mechatronics Engineering, Nanjing Forestry University, Nanjing, China

2. School of Mechanical Engineering, Southeast University, Nanjing, China

Abstract

Stacked denoising autoencoder is one of the most classic models of deep learning. However, there are two problems in the traditional stacked denoising autoencoder: (1) the parameter selection of stacked denoising autoencoder mainly depends on expert experience and (2) stacked denoising autoencoder is mainly restricted to learn automatically single-domain features from raw vibration signals while identifying the fault type, which implies that no linear mapping relationship located in other domains of vibration data is neglected, which may lead to the imperfect diagnostic results. Consequently, to address these issues, learn the well-rounded feature representation, and improve recognition accuracy, this article presents a novel approach called multi-domain indicator-based optimized stacked denoising autoencoder for automatic fault identification of rolling bearing. First, multi-domain indicator of the original vibration signal is constructed through calculating the expression of different domains (e.g. time frequency domain, and time frequency domain). Second, the constructed multi-domain indicator is regarded as the input dataset to train stacked denoising autoencoder architecture containing three hidden layers, and a recently reported nature-inspired algorithm named grasshopper optimization algorithm is employed to synchronously determine the model parameters of stacked denoising autoencoder, which is aimed at learning more robust and reliable feature representation. Finally, the feature representation learned in the testing set is fed into the trained stacked denoising autoencoder model containing softmax classifier for identifying bearing health conditions. The presented method is evaluated using two bearing vibration datasets. Experimental results indicate that our approach can provide high-accuracy recognition over 99% for bearing health condition, and it achieves more decent and precise classification results compared with some shallow learning model and standard deep learning architecture.

Funder

National Natural Science Foundation of China

Jiangsu Agricultural Science and Technology Independent Innovation Fund

jiangsu provincial key research and development program

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3