A bearing fault and severity diagnostic technique using adaptive deep belief networks and Dempster–Shafer theory

Author:

Yu Kun1,Lin Tian Ran1ORCID,Tan Jiwen1

Affiliation:

1. School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao, P. R. China

Abstract

An artificial intelligent bearing fault and hierarchical severity diagnosis framework is proposed in this study. The framework utilizes a combined deep belief networks (DBNs) and Dempster–Shafer (D-S) theory fault diagnosis scheme and adopts a two-stage approach in classifying (1) bearing fault conditions and (2) fault severities. The combined fault diagnostic scheme first employs two parameter-optimized DBNs to process the horizontal and vertical vibration data acquired from the bearing house of a test rig, where the parameters of the DBNs are optimized using a hybrid genetic algorithm and particle swarm optimization algorithm proposed in this study. The classification results from the two DBNs are fused further using the D-S theory to improve the diagnostic accuracy. The fault diagnosis scheme is used first to classify the bearing fault conditions in Stage 1 from a bulk dataset containing all bearing operation conditions under study. The same diagnosis scheme is applied once more to classify the hierarchical fault severities for each fault condition in Stage 2 using the pre-classified data from Stage 1. The effectiveness of the framework is then evaluated on a set of bearing condition monitoring data. A comparison study between the results obtained using the current method and those from existing published work is also presented in the article. It is shown that the accuracy for bearing fault and severity diagnosis can be substantially improved by using the current framework.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3