CHAOS THEORY, ADVANCED METAHEURISTIC ALGORITHMS AND THEIR NEWFANGLED DEEP LEARNING ARCHITECTURE OPTIMIZATION APPLICATIONS: A REVIEW

Author:

AKGUL AKIF1ORCID,KARACA YELl̇Z2ORCID,PALA MUHAMMED ALI3ORCID,ÇIMEN MURAT ERHAN3ORCID,BOZ ALI FUAT3ORCID,YILDIZ MUSTAFA ZAHID3ORCID

Affiliation:

1. Department of Computer Engineering, Faculty of Engineering, Hitit University, Corum, Türkiye

2. University of Massachusetts (UMass) Chan Medical School, Worcester, MA, USA

3. Department of Electrical and Electronics Engineering, Faculty of Technology, Sakarya University of Applied Sciences, Serdivan, Sakarya, Türkiye

Abstract

Metaheuristic techniques are capable of representing optimization frames with their specific theories as well as objective functions owing to their being adjustable and effective in various applications. Through the optimization of deep learning models, metaheuristic algorithms inspired by nature, imitating the behavior of living and non-living beings, have been used for about four decades to solve challenging, complex, and chaotic problems. These algorithms can be categorized as evolution-based, swarm-based, nature-based, human-based, hybrid, or chaos-based. Chaos theory, as a useful approach to understanding neural network optimization, has the basic idea of viewing the neural network optimization as a dynamical system in which the equation schemes are utilized from the space pertaining to learnable parameters, namely optimization trajectory, to itself, which enables the description of the evolution of the system by understanding the training behavior, which is to say the number of iterations over time. The examination of the recent studies reveals the importance of chaos theory, which is sensitive to initial conditions with randomness and dynamical properties that are principally emerging on the complex multimodal landscape. Chaotic optimization, in this regard, accelerates the speed of the algorithm while also enhancing the variety of movement patterns. The significance of hybrid algorithms developed through their applications in different domains concerning real-world phenomena and well-known benchmark problems in the literature is also evident. Metaheuristic optimization algorithms have also been applied to deep learning or deep neural networks (DNNs), a branch of machine learning. In this respect, the basic features of deep learning and DNNs and the extensive use of metaheuristic algorithms are overviewed and explained. Accordingly, the current review aims at providing new insights into the studies that deal with metaheuristic algorithms, hybrid-based metaheuristics, chaos-based metaheuristics as well as deep learning besides presenting recent information on the development of the essence of this branch of science with emerging opportunities, applicability-based optimization aspects and generation of well-informed decisions.

Funder

Scientific and Technological Research Council of Turkey

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3