Research on Fault Prediction of Nuclear Safety-Class Signal Conditioning Module Based on Improved GRU

Author:

Chen Zhi12ORCID,Dai Miaoxin2,Liu Jie2,Jiang Wei1

Affiliation:

1. National Key Laboratory of Nuclear Reactor Technology, Nuclear Power Institute of China, Chengdu 610213, China

2. School of Computer Science, University of South China, Hengyang 421200, China

Abstract

To improve the reliability and maintainability of the nuclear safety-class digital control system (DCS), this paper conducts a study on the fault prediction of critical components in the output circuit of the nuclear safety-class signal conditioning module. To address the issue of insufficient feature extraction for the minor offset fault feature and the low accuracy of fault prediction, a predictive model based on stacked denoising autoencoder (SDAE) feature extraction and an improved gated recurrent unit (GRU) is proposed. Therefore, fault simulation modeling is performed for critical components of the signal output circuit to obtain fault datasets of critical components, and the SDAE model is used to extract fault features. The fault prediction model based on GRU is established, and the number of hidden layers, the number of hidden layer nodes, and the learning rate of the GRU model are optimized using the adaptive gray wolf optimization algorithm (AGWO). The prediction performance evaluation metrics include the root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and absolute error (EA), which are used for evaluating the prediction results of models such as the AGWO-GRU model, recurrent neural network (RNN) model, and long short-term memory network (LSTM). The results show that the GRU model optimized by AGWO has a better prediction accuracy (errors range within 0.01%) for the faults of the circuit critical components, and, moreover, can accurately and stably predict the fault trend of the circuit.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3