Prediction of frequency and spatially dependent attenuation of guided waves propagating in mounted and unmounted A380 parts made up of anisotropic viscoelastic composite laminates

Author:

Guo Shuanglin1ORCID,Rébillat Marc1ORCID,Mechbal Nazih1

Affiliation:

1. PIMM Laboratory, Arts et Métiers Sciences et Technologies, CNRS, CNAM, HESAM Université, Paris, France

Abstract

Monitoring damage in composite structures using guided wave-based techniques is particularly effective due to their excellent ability to propagate over relatively long distance and hence to cover a large area with few testing time and equipment. The industrialization of this method is highly tributary of the number and placement of the active elements. Yet, the optimal sensorization of a structure relies on the decrease in amplitude of guided waves over propagation distance. A reliable prediction of attenuation of guided waves is still a challenge especially for anisotropic viscoelastic composite materials which exhibit complex changes of attenuation with propagation direction and thus a spatial dependency of attenuation. In this paper, the damped global matrix method (dGMM), having stable and efficient merits, is developed to predict the frequency and spatially dependent attenuation of waves propagating in anisotropic composite materials. dGMM integrates three damping models (Hysteretic, Kelvin-Voigt, and Biot models) into the conventional undamped GMM to consider viscoelasticity of composite laminates. The proposed dGMM is first theoretically validated by numerical comparison with the semi-analytical finite element method. In addition, two industrial case studies, parts of an A380 nacelle at scale one, are employed to experimentally validate the proposed attenuation prediction method. The first one is a fan cowl structure and the second one is an inner fixed structure, both either unmounted or mounted on an actual instrumented A380 plane. This makes the validation extremely valuable for both the scientific and industrial communities. The proposed attenuation prediction method thus paves the way to optimally deploy sensor network for structural health monitoring of anisotropic viscoelastic composite structures.

Funder

China Scholarship Council

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3