Identification of viscoelastic material properties by ultrasonic angular measurements in double through-transmission

Author:

Poudrel Anne-Sophie1,Gattin Max2,Rosi Giuseppe2ORCID,Rébillat Marc1,Peixinho Jorge1ORCID,Bochud Nicolas2ORCID,Margerit Pierre1ORCID

Affiliation:

1. Laboratoire Procédés et Ingénierie en Mécanique et Matériaux, PIMM, Arts et Métiers ParisTech 1 , UMR 8006, CNRS, CNAM, HESAM université, 151 boulevard de l’hôpital, 75013 Paris, France

2. Univ Paris Est Creteil, Univ Gustave Eiffel 2 , CNRS, UMR 8208, MSME, F-94010 Créteil, France

Abstract

Recent advances in additive manufacturing (AM) of viscoelastic materials have paved the way toward the design of increasingly complex structures. In particular, emerging biomedical applications in acoustics involve structures with periodic micro-architectures, which require a precise knowledge of longitudinal and transverse bulk properties of the constituent materials. However, the identification of the transverse properties of highly soft and attenuating materials remains particularly challenging. Thereby, the present work provides a methodological framework to identify the frequency-dependent ultrasound characteristics (i.e., phase velocity and attenuation) of viscoelastic materials. The proposed approach relies on an inverse procedure based on angular measurements achieved in double through-transmission, referred as θ-scan. Toward this goal, a forward modeling of the double transmitted waves through a homogeneous solid is proposed for any incidence angle based on the global matrix formalism. The experimental validation is conducted by performing ultrasound measurements on two types of photopolymers that are commonly employed for AM purposes: a soft elastomer (ElasticoTM Black) and a glassy polymer (VeroUltraTM White). As a result, the inferred dispersive ultrasound characteristics are of interest for the computational calibration and validation of models involving complex multi-material structures in the MHz regime.

Funder

Fédération Francillienne de Mécanique

Publisher

Acoustical Society of America (ASA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3