Quantitative analysis of pit defects in an automobile engine cylinder cavity using the radial basis function neural network–genetic algorithm model

Author:

Yang Xiaoxia1,Xue Bin2,Jia Lecheng3,Zhang Hao3

Affiliation:

1. Tianjin Key Laboratory of Information Sensing & Intelligent Control, Tianjin University of Technology and Education, Tianjin, China

2. School of Marine Science and Technology, Tianjin University, Tianjin, China

3. State Key Laboratory of Precision Measurement Technology and Instrument, Tianjin University, Tianjin, China

Abstract

In the automotive remanufacturing movement, the inspection of the corrosion defects on the engine cylinder cavity is a key and difficult problem. In this article, based on the ultrasonic phased array technology and the radial basis function neural network–genetic algorithm model, a new quantitative analysis method is proposed to estimate the size of the pit defects on the automobile engine cylinder cavity. Echo signals from the small pit defects with different sizes are acquired by an ultrasonic phased array transducer. According to the ultrasonic signal characteristics, the feature vectors are extracted using wavelet packet, fractal technology, peak amplitude method, and some routine extract methods. The radial basis function neural network–genetic algorithm model is investigated for the quantitative analysis of the pit defects, which can obtain an optimal quantitative model. The results show that the proposed model is effective in the corrosion estimation work.

Funder

The projects from Tianjin University of Technology and Education

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3