A condition-based opportunistic maintenance strategy for multi-component system

Author:

Zhao Hongshan1,Xu Fanhao2,Liang Botong1,Zhang Jianping1,Song Peng3

Affiliation:

1. School of Electrical and Electronic Engineering, North China Electric Power University, Baoding, China

2. Yantai Electric Supply Company, State Grid Shandong Electric Power Company, Yantai, China

3. State Grid Jibei Electric Power Company, Beijing, China

Abstract

As a new dynamic maintenance strategy, the condition-based opportunistic maintenance strategy for multi-component system is presented in this work. In the strategy, the degeneration of each component is described by Weibull proportional hazards model or Weibull proportional intensity model, and the condition indicator is defined to characterize the operating state of each component. Then, when and how to maintain a component can be confirmed by comparing the value of the condition indicator with that of the maintenance threshold function. Condition-based maintenance will be implemented on a component if the value of its condition indicator exceeds that of its condition-based maintenance threshold function. Meanwhile, opportunistic maintenance will also be implemented on a component if the value of its condition indicator exceeds that of its opportunistic maintenance threshold function. The two maintenance threshold functions can be determined by minimizing maintenance cost. Finally, taking the wind turbine as an example of a multi-component system, simulation analyses are described to validate the feasibility and effectiveness of the condition-based opportunistic maintenance strategy.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3