A Dynamic Reliability Prognosis Method for Reusable Spacecraft Mission Planning Based on Digital Twin Framework

Author:

Gao Bo1,Ye Yumei2,Pan Xin1,Yang Qiang1,Xie Weihua1,Meng Songhe1,Huo Yanyan1

Affiliation:

1. National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology , Harbin, Heilongjiang 150001, China

2. School of Mechanical Technology, Wuxi Institute of Technology , Wuxi 214121, China

Abstract

Abstract Reusable spacecraft has great potential in reducing space launch cost. Structural reliability evaluation is critical for mission planning of reusable spacecraft. A dynamic reliability prognosis method based on digital twin framework is proposed for mission planning in the paper. In this method, Uncertainties integration and dynamic model updating are implemented through a dynamic Bayesian network. A maintenance point is set when the predicted structural reliability level is lower than a threshold or unexpected conditions such as landing impact occur. Then, inspected data can be assimilated by the framework to dynamically update the structural reliability. Thus, it supports dynamic adjustment of maintenance interval, early warning of structure failure, and mission planning with quantified risk. A numerical example considering single point crack growth under fatigue load and landing impact of a simplified spacecraft structure is used for demonstration. Results show that the crack size predictions can be calibrated by inspected data and its uncertainties can be reduced. The proper selection of landing impact probability in reliability prediction is helpful to control the maintenance interval. The reliability of the spacecraft can be increased through model updating with new inspected data, representing a potential lifetime extension can be realized by the proposed method.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering,Safety Research,Safety, Risk, Reliability and Quality

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3