Wind Turbine Maintenance Optimisation: Principles of Quantitative Maintenance Optimisation

Author:

Andrawus Jesse A.1,Watson John1,Kishk Mohammed2

Affiliation:

1. School of Engineering, the Robert Gordon University, Schoolhill Aberdeen, AB10 1FR, UK

2. The Scott Sutherland School, the Robert Gordon University, Garthdee Road, Aberdeen, AB10 7QB, UK

Abstract

Maintenance optimisation is a crucial issue for industries that utilise physical assets due to its impact on costs, risks and performance. Current quantitative maintenance optimisation techniques include Modelling System Failures MSF (using monte-carlo simulation) and Delay-Time Maintenance Model (DTMM). The MSF investigates equipment failure patterns by using failure distribution, resource availability and spare-holdings to determine optimum maintenance requirements. The DTMM approach examines equipment failure patterns by considering failure consequences, inspection costs and the period to determine optimum inspection intervals. This paper discusses the concept, relevance and applicability of the MSF and DTMM techniques to the wind energy industry. Institutional consideration as well as the benefits of practical implementation of the techniques are highlighted and discussed.

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3