A novel deep learning-based method for damage identification of smart building structures

Author:

Yu Yang1ORCID,Wang Chaoyue1,Gu Xiaoyu2,Li Jianchun1

Affiliation:

1. School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia

2. Centre for Infrastructure Engineering, Western Sydney University, Penrith, NSW, Australia

Abstract

In the past few years, intelligent structural damage identification algorithms based on machine learning techniques have been developed and obtained considerable attentions worldwide, due to the advantages of reliable analysis and high efficiency. However, the performances of existing machine learning–based damage identification methods are heavily dependent on the selected signatures from raw signals. This will cause the fact that the damage identification method, which is the optimal solution for a specific application, may fail to provide the similar performance on other cases. Besides, the feature extraction is a time-consuming task, which may affect the real-time performance in practical applications. To address these problems, this article proposes a novel method based on deep convolutional neural networks to identify and localise damages of building structures equipped with smart control devices. The proposed deep convolutional neural network is capable of automatically extracting high-level features from raw signals or low-level features and optimally selecting the combination of extracted features via a multi-layer fusion to satisfy any damage identification objective. To evaluate the performance of the proposed deep convolutional neural network method, a five-level benchmark building equipped with adaptive smart isolators subjected to the seismic loading is investigated. The result shows that the proposed method has outstanding generalisation capacity and higher identification accuracy than other commonly used machine learning methods. Accordingly, it is deemed as an ideal and effective method for damage identification of smart structures.

Funder

Australian Research Council

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3