Structural Damage Detection through Dual-Channel Pseudo-Supervised Learning

Author:

Hu Tianjie12,Ma Kejian12,Xiao Jianchun12

Affiliation:

1. Research Center of Space Structures, Guizhou University, Guiyang 550025, China

2. Key Laboratory of Structural Engineering of Guizhou Province, Guiyang 550025, China

Abstract

Structural damage detection is crucial for maintaining the health and safety of buildings. However, achieving high accuracy in damage detection remains challenging, especially in noisy environments. To improve the accuracy and noise robustness of damage detection, this study proposes a novel method that combines the Conformer model and the dual-channel pseudo-supervised (DCPS) learning strategy for structural damage detection. The DCPS learning strategy improves the stability and accuracy of the model in noisy environments. It enables the model to input acceleration signals with different noise levels into each branch of the dual-channel network, thereby learning noise-robust features. The Conformer model, as the backbone network, integrates the advantages of convolutional neural networks (CNNs) and Transformers to effectively extract both local and global features from acceleration signals. The proposed method is validated using a four-story single-span steel-frame building model and the IASC-ASCE simulated benchmark structure. The results show that the proposed method achieves a higher classification accuracy than existing structural damage detection methods. Compared to the single Conformer-based method, this method improves the accuracy by 1.57% and 4.93% for the two validation structures, respectively. Moreover, the proposed method benefits from the DCPS learning strategy’s ability to achieve superior noise robustness compared to other methods. The proposed method holds potential value for improving the accuracy of damage detection and noise robustness in scenarios such as maintenance and extreme events.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guizhou Province of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3