Author:
Kong Xuan,Cai Chun-Sheng,Hu Jiexuan
Abstract
Research on detecting structural damage at the earliest possible stage has been an interesting topic for decades. Among them, the vibration-based damage detection method as a global technique is especially pervasive. The present study reviewed the state-of-the-art on the framework of vibration-based damage identification in different levels including the prediction of the remaining useful life of structures and the decision making for proper actions. This framework consists of several major parts including the detection of damage occurrence using response-based methods, building reasonable structural models, selecting damage parameters and constructing objective functions with sensitivity analysis, adopting optimization techniques to solve the problem, predicting the remaining useful life of structures, and making decisions for the next actions. For each part, the commonly used methods were reviewed and the merits and drawbacks were summarized to give recommendations. This framework is aimed to guide the researchers and engineers to implement step by step the structure damage identification using vibration measurements. Finally, the future research work in this field is recommended.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
129 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献