Towards vibration-based damage detection of civil engineering structures: overview, challenges, and future prospects

Author:

Zar Ali,Hussain Zahoor,Akbar Muhammad,Rabczuk Timon,Lin Zhibin,Li Shuang,Ahmed Bilal

Abstract

AbstractIn this paper, we delve into the evolving landscape of vibration-based structural damage detection (SDD) methodologies, emphasizing the pivotal role civil structures play in society's wellbeing and progress. While the significance of monitoring the resilience, durability, and overall health of these structures remains paramount, the methodology employed is continually evolving. Our focus encompasses not just the transformation brought by the advent of artificial intelligence but also the nuanced challenges and future directions that emerge from this integration. We shed light on the inherent nonlinearities civil engineering structures face, the limitations of current validation metrics, and the conundrums introduced by inverse analysis. Highlighting machine learning's (ML) transformative role, we discuss how techniques such as artificial neural networks and support vector machine's have expanded the SDD's scope. Deep learning's (DL) contributions, especially the innovative capabilities of convolutional neural network in raw data feature extraction, are elaborated upon, juxtaposed with the potential pitfalls, like data overfitting. We propose future avenues for the field, such as blending undamaged real-world data with simulated damage scenarios and a tilt towards unsupervised algorithms. By synthesizing these insights, our review offers an updated perspective on the amalgamation of traditional SDD techniques with ML and DL, underlining their potential in fostering more robust civil infrastructures.

Funder

Bauhaus-Universität Weimar

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3