To experimental study of performance evaluation of masonry brick bond in shear and compression in comparison

Author:

Abbas Nadeem,Yousaf Muhammad,Akbar Muhammad,Huali Pan,Usman Yousaf M.,Guoqiang Ou

Abstract

The construction of a structure is prohibitively expensive due to high material and labour expenses. Still, the production of cement, which is the most widely used binding substance in construction, results in the emission of a large amount of CO2 into the atmosphere. It has only recently been discovered that Pakistan is short of approximately 9 million residential constructions. Thus, there is a great need for cost-effective and energy-efficient masonry construction because of economic and environmental concerns. Rat-trap masonry bond creates a cavity in the wall, which serves as both thermal insulation and a cost-saving measure. Because of the inherent property of rat-trap masonry bond, a cavity is formed in the wall, which not only serves as thermal insulation for the interior but is also cost-effective It has been observed that approximately 26.11 % of the total construction cost, comprising of labor and material, can be curtailed by adopting the rat-trap bonding technique. Rat-trap bond construction is recognized as a greener and more sustainable alternative to conventional brick bonds. A comparative study of the structural behavior of the rat-trap and conventionally used English bond has been conducted. 72 prisms of rat-trap bond and English bond from three sources of bricks were tested under compression load at the ages of 28 and 56 days. The same number of prisms were tested under diagonal tension load at both ages. 18 triplet prisms from all sources of bricks were tested for shear bond strength without lateral load, whereas 5 triplet prisms from every brick source were tested with a set of lateral pre-compression loading of 29 psi, 87 psi, and 145 psi. The results show that the rat-trap bond has much higher compressive and shear strengths than the English bond.

Publisher

JVE International Ltd.

Subject

Mechanical Engineering,Instrumentation,Materials Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3