A Machine learning-based approach to determining stress in rails

Author:

Belding Matthew1,Enshaeian Alireza1,Rizzo Piervincenzo1ORCID

Affiliation:

1. Laboratory for Nondestructive Evaluation and Structural Health Monitoring Studies, Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA

Abstract

Recent advancements in both software and hardware have sparked the use of machine learning (ML) in structural health monitoring (SHM) applications. This paper delves into the use of ML to determine axial stress in continuous welded rails (CWR). The overall proposed SHM strategy consists of monitoring the vibration of CWR and associating their modal characteristics to the rail longitudinal stress using a ML algorithm trained with data generated with a finite element model. In the present study, the feasibility of the proposed strategy was tested on a simple rail segment subjected to mechanical compression. Two algorithms were developed using hyperparameter search optimization techniques to infer the stress from the frequencies of vibration of a few modes of the rail. The training data were generated with a finite element model of a rail segment under varying axial stresses, rail lengths, and boundary conditions at the two ends of the segment. The algorithms were then tested with a second set of data generated numerically and the results of an experiment in which a 2.4-m-long rail was subjected to compressive load and excited with an instrumented hammer. Both tests demonstrated that ML is a viable tool to estimate axial stress in the rail segment provided a sufficient number of modes of vibrations are presented to the learning algorithm. For the future, more experiments are warranted to test the ML against data from real CWR.

Funder

Federal Railroad Administration

American Association of Railroads

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3