An integrated condition monitoring scheme for health state identification of a multi-stage gearbox through Hurst exponent estimates

Author:

Inturi Vamsi1ORCID,Balaji Sai Venkatesh2,Gyanam Praharshitha2ORCID,Pragada Brahmini Priya Venkata2,Geetha Rajasekharan Sabareesh2ORCID,Pakrashi Vikram3ORCID

Affiliation:

1. Department of Mechanical Engineering, Chaitanya Bharathi Institute of Technology (A), Hyderabad, India

2. Department of Mechanical Engineering, BITS Pilani, Hyderabad Campus, Hyderabad, India

3. UCD Centre for Mechanics, Dynamical Systems and Risk Laboratory, University College Dublin, Ireland

Abstract

The vibration and acoustic signals collected from rotating machinery are often non-stationary and aperiodic, and it is a challenge to post-process and extract the defect sensitive health indicators. In this paper, we demonstrate how the estimated Hurst exponent of such measured data can be advantageous for analyzing non-stationary and aperiodic data due to its self-similarity and scale-invariance properties. To illustrate this, the paper demonstrates detection of fault diagnostics of a multi-stage gearbox operating under fluctuating speeds through estimated Hurst exponent of the raw vibration and acoustic signals as a health indicator. Thirteen health states of the gearbox are considered, and the raw vibration and acoustic signals are collected. The Hurst exponents are calculated using three different approaches: generalized Hurst exponent (q = 1, 2, 3, and 4), rescale range statistical (R/S) analysis, and dispersion analysis from the vibration and acoustic signals. Three different health indicator datasets are formulated and subjected to feature learning through conventional machine-learning (decision tree and support vector machine) and advanced machine-learning (deep-learning) classifiers. The effectiveness of these datasets while discriminating between the health states of the gearbox is investigated, yielding classification accuracies of 96.4% when compared with the individual health indicator datasets. The ability of the fault diagnosis and defect severity analysis with reduced reliance on the signal post-processing algorithms is demonstrated.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3