Gear fault diagnosis based on bidimensional time-frequency information theoretic features and error-correcting output codes: A multi-class support vector machine

Author:

Rai Akhand1ORCID,Kim Jong-Myon2,Kumar Anil3ORCID,Balaji Palani Selvaraj4

Affiliation:

1. School of Engineering and Applied Science, Ahmedabad University, Ahmedabad, Gujarat, India

2. Deparment of Electric, Electronic and Computer Engineering, University of Ulsan, Ulsan, South Korea

3. College of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou, China

4. Department of Mechanical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India

Abstract

Fault diagnosis of gears plays an important role in reducing downtime and maximizing efficiency of rotating machinery. Vibration is popular parameter for gear fault detection. The occurrence of faults produces recurring transient impulses in the gear vibration signals. However, these transient features are heavily masked by background noises making it difficult to investigate gear faults. Furthermore, the development of automated fault diagnosis techniques requiring minimal human supervision poses another big challenge. Consequently, in this paper, an automated fault diagnosis technique based on a novel information theoretic (IT)-derived-feature set and an artificial intelligence technique called as error-correcting output codes-support vector machine (ECOC-SVM) is proposed. The gear vibration signals are first processed by continuous wavelet transform to obtain the corresponding time-frequency distributions (TFDs). The TFDs of the faulty signals are then discriminated from those of the healthy ones by introducing IT measures, namely, Kulback-Leibller divergence (KLD), Jensen-Shannon divergence (JSD), Jensen-Rényi divergence (JRD), and Jensen-Tsallis divergence (JTD). These uni-dimensional-IT measures are modified to accommodate the bidimensional TFDs, and the resultant features are referred to as bidimensional time-frequency information theoretic divergence (BTF-ITD) features. The BTF-ITD features are then used to train the ECOC-SVM model. Finally, the trained ECOC-SVM model is used for testing the gear faults. The ECOC approach rectifies the biases and errors in SVM model predictions. The experimental results confirm that the proposed approach provides higher classification accuracy than time-domain features; voting-based-multiclass SVM; and deep learning techniques, such as those based on the stacked sparse autoencoder (SSAE), deep neural network (DNN), and convolution neural network (CNN).

Funder

Ahmedabad University

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3