Real-time fault diagnosis using deep fusion of features extracted by parallel long short-term memory with peephole and convolutional neural network

Author:

Zhou Funa1ORCID,Zhang Zhiqiang2,Chen Danmin3

Affiliation:

1. School of Logistic Engineering, Shanghai Maritime University, Shanghai, China

2. School of Computer and Information Engineering, Henan University, Kaifeng, China

3. School of Software, Henan University, Kaifeng, China

Abstract

Analysis of one-dimensional vibration signals is the most common method used for safety analysis and health monitoring of rotary machines. How to effectively extract features involved in one-dimensional sequence data is crucial for the accuracy of real-time fault diagnosis. This article aims to develop more effective means of extracting useful features potentially involved in one-dimensional vibration signals. First, an improved parallel long short-term memory called parallel long short-term memory with peephole is designed by adding a peephole connection before each forget gate to prevent useless information transferring in the cell. It can not only solve the memory bottleneck problem of traditional long short-term memory for long sequence but also can make full use of all possible information helpful for feature extraction. Second, a fusion network with new training mechanism is designed to fuse features extracted from parallel long short-term memory with peephole and convolutional neural network, respectively. The fusion network can incorporate two-dimensional screenshot image into comprehensive feature extraction. It can provide more accurate fault diagnosis result since two-dimensional screenshot image is another form of expression for one-dimensional vibration sequence involving additional trend and locality information. Finally, real-time two-dimensional screenshot image is fed into convolutional neural network to secure a real-time online diagnosis which is the primary requirement of the engineers in health monitoring. Validity of the proposed method is verified by fault diagnosis for rolling bearing and gearbox.

Funder

National Natural Science Foundation of China

Shanghai S&T Commission

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3