Rolling element bearing weak fault diagnosis based on optimal wavelet scale cyclic frequency extraction
Author:
Affiliation:
1. School of Mechanical Engineering, Dalian University of Technology, Dalian, China
2. School of Mechanical Engineering, Dalian University, Dalian, China
Abstract
Funder
Natural Science Foundation of China
Collaborative Innovation Center of Major Machine Manufacturing in Liaoning
Publisher
SAGE Publications
Subject
Mechanical Engineering,Control and Systems Engineering
Link
http://journals.sagepub.com/doi/pdf/10.1177/0959651818766814
Reference42 articles.
1. Rotating machinery prognostics: State of the art, challenges and opportunities
2. Cross-heterogeneous-database age estimation through correlation representation learning
3. Fault diagnosis of rotating machinery based on the statistical parameters of wavelet packet paving and a generic support vector regressive classifier
4. A Robust Regularization Path Algorithm for $\nu $ -Support Vector Classification
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Gear fault diagnosis based on complex network theory and error-correcting output codes: Multi class support vector machine;Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering;2024-01-22
2. Data Augmentation in 2D Feature Space for Intelligent Weak Fault Diagnosis of Planetary Gearbox Bearing;Applied Sciences;2022-08-23
3. Weak feature extraction of rolling element bearing based on self-adaptive blind de-convolution and enhanced envelope spectral;Journal of Vibration and Control;2021-12-12
4. Bearing fault diagnosis based on EMD and improved Chebyshev distance in SDP image;Measurement;2021-05
5. Real-time fault diagnosis using deep fusion of features extracted by parallel long short-term memory with peephole and convolutional neural network;Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering;2020-08-24
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3