A new approach to health condition identification of rolling bearing using hierarchical dispersion entropy and improved Laplacian score

Author:

Yan Xiaoan12ORCID,Liu Ying2,Huang Dongsheng1,Jia Minping3

Affiliation:

1. National Engineering Research Center of Biomaterials, Nanjing Forestry University, Nanjing, China

2. School of Mechatronics Engineering, Nanjing Forestry University, Nanjing, China

3. School of Mechanical Engineering, Southeast University, Nanjing, China

Abstract

Since bearing fault signal under complex running status is usually manifested as the characteristics of nonlinear and non-stationary, which implies it is difficult to extract accurate affluent features and achieve effective fault identification via conventional signal processing tools. In this article, a hybrid intelligent fault identification scheme, the combination of hierarchical dispersion entropy and improved Laplacian score, is proposed to address this problem, which is mainly composed of three procedures. First, the particle swarm optimization–based optimized hierarchical dispersion entropy is adopted to excavate multilevel fault symptoms from low-frequency and high-frequency components, which can both solve the shortcoming of missing of high-frequency feature information existing in the recently presented multiscale dispersion entropy and artificial parameter selection issue of hierarchical dispersion entropy. Second, an improved feature selection strategy based on improved Laplacian score is proposed to select the sensitive features to establish a low-dimensional feature data set by incorporating the weight coefficient into Laplacian score. Finally, the established low-dimensional feature data set is fed to a Softmax classifier to automatically identify different health conditions of rolling bearing. The efficacy of the proposed method is validated by two experimental cases. Results show that our approach is highly effective in recognizing different fault categories and severities of rolling bearing. Meanwhile, our approach exhibits higher accuracy and better identification performance than some similar entropy-based hybrid approaches and other identification methods reported in this article.

Funder

Postgraduate Research & Practice Innovation Program of Jiangsu Province

National Natural Science Foundation of China

Jiangsu Provincial Key Research and Development Program

Jiangsu Agricultural Science and Technology Independent Innovation Fund

Publisher

SAGE Publications

Subject

Mechanical Engineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3