Research on the Fault Diagnosis Method of Rotating Machinery Based on Improved Variational Modal Decomposition and Probabilistic Neural Network Algorithm

Author:

Li Zhangjie1,Zou Chao1,Chen Zhimin2,Lu Hong1ORCID,Xie Shiwen2,Zhang Wei1,He Jiaqi1

Affiliation:

1. School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China

2. China Ship Development and Design Center, Wuhan 430070, China

Abstract

The fault diagnosis of rotating machinery is vital in industry but traditionally depends on manual expertise, requiring substantial resources. To improve diagnostic accuracy, enable effective condition monitoring, and minimize the impact of faults on operations, advanced diagnostic techniques are essential. Hence, we propose an advanced fault diagnosis framework that leverages improved particle swarm optimization (IPSO), variational mode decomposition (VMD), and probabilistic neural networks (PNN) to accurately diagnose faults in rotating machinery using gear and rolling bearing vibration signals. Initially, the vibration signals are decomposed into intrinsic mode functions via VMD, enabling the capture of subtle but critical fault features. To address parameter selection challenges in VMD, we employed IPSO to optimize the VMD parameters, ensuring the optimal decomposition effect. Further, we refined the feature set by applying Laplace fraction optimization and feature dimensionality reduction, isolating sensitive features that serve as input to a PNN-based fault classification model. Experimental results demonstrated that this IPSO-VMD-PNN framework achieves high diagnostic accuracy for various fault types, establishing it as an effective tool for fault identification in rotating machinery.

Funder

National Natural Science Foundation of China

Key Research and Development project of Hubei Science and Technology Plan

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3