The effects of electroadhesive clutch design parameters on performance characteristics

Author:

Diller Stuart B1ORCID,Collins Steven H123,Majidi Carmel13

Affiliation:

1. Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA

2. Department of Mechanical Engineering, Stanford University, Stanford, CA, USA

3. The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA

Abstract

Actuators that employ clutches can exhibit mechanical impedance tuning and improved energy efficiency. However, these integrated designs have been difficult to achieve in practice because traditional clutches are typically heavy and consume substantial power. In this article, we describe a lightweight and low-power clutch that operates with electrostatic adhesion and achieves order-of-magnitude improvements in performance compared to traditional clutches. In order to inform appropriate design in a variety of applications, we experimentally determine the effect of clutch length, width, dielectric thickness, voltage, and electrode stiffness on the holding force, engage and release times, and power consumption. The highest performance clutch held 190 N, weighed 15 g, and consumed 3.2 mW of power. The best samples released and engaged within 20 ms, as fast as conventional clutches. We also conducted a fatigue test that showed reliable performance for over 3 million cycles. We expect electroadhesive clutches like these will enable actuator designs that achieve dexterous, dynamic movement of lightweight robotic systems.

Funder

NIKE

Division of Civil, Mechanical and Manufacturing Innovation

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3