Design optimization of a shape memory alloy–actuated robotic catheter

Author:

Crews John H1,Buckner Gregory D1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA

Abstract

In this article, we present a method for optimizing the design of a shape memory alloy–actuated robotic catheter. Highly maneuverable robotic catheters have the potential to revolutionize the treatment of cardiac diseases such as atrial fibrillation. To operate effectively, the catheter must navigate within the confined spaces of the heart, motivating the need for a tight bending radius. The design process is complicated by the shape memory alloy’s hysteretic relationships between strain, stress, and temperature. This article addresses the modeling and optimization of both a single-tendon and antagonistic tendon robotic catheter using COMSOL Multiphysics Modeling and Simulation software. Several design variables that affect the actuator behavior are considered; these include the shape memory alloy tendon radius and its prestrain, the shape memory alloy tendon offset from the neutral axis of the flexible beam, the flexible beam radius and elastic modulus, and the thermal boundary condition between the shape memory alloy tendon and the beam. A genetic algorithm is used to optimize the radius of curvature of the two catheter designs. Both a single-crystal and polycrystalline models are implemented in COMSOL and are experimentally validated.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3