Performance Characterization of In-plane Electro-thermally Driven Linear Microactuators

Author:

Lai Yongjun1,Bordatchev Evgueni V.2,Nikumb Suwas K.3,Hsu Wensyang4

Affiliation:

1. Integrated Manufacturing Technologies Institute, National Research Council of Canada, 800 Collip Circle, London, Ontario N6G 4X8, Canada, Queen's University, Kingston, Ontario, Canada

2. Integrated Manufacturing Technologies Institute, National Research Council of Canada, 800 Collip Circle, London, Ontario N6G 4X8, Canada,

3. Integrated Manufacturing Technologies Institute, National Research Council of Canada, 800 Collip Circle, London, Ontario N6G 4X8, Canada

4. Department of Mechanical Engineering, National Chiao-Tung University, 1001 Ta Hseuh Road, Hsin Chu, Taiwan, 30010, ROC

Abstract

Static and dynamic electro-mechanical performance of a microactuator is a key factor in the functioning of an integrated microsystem composed of moving components such as optical shutters/switches, micropumps, microgrippers, and microvalves. Therefore, the development of such systems primarily focuses on the overall design and parameter optimization of an actuator as the major driving element with respect to the desired performance parameters, e.g., displacement, force, dimensional constraints, material, actuation principle, and method of fabrication. This study presents results on the static and dynamic electro-mechanical performance analysis of an in-plane electro-thermally driven linear microactuator. Each microactuator, having a width of 2220 mm and made of 25 mm thick nickel foil, consisted of a pair of cascaded structures. Connecting several actuation units in a series formed each cascaded structure. Several microactuators with a different number of actuation units were fabricated using the laser micromachining technology. The static performance of these microactuators was evaluated with respect to the maximum linear output displacements, actual resistance, applied current, and consumed electric power. The maximum displacements varied approximately from 3 to 44 mm, respectively, depending on the number of actuation units. The dynamic performance was studied as a response function on constant applied current with respect to the output displacements. In addition, the response time was evaluated for different applied currents and for actuators with 2, 4, and 6 actuation units. The microactuators’ performance results are promising for applications in MEMS/MOEMS, microfluidic, and microrobotic devices.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3