Evaluating high-resolution remote sensing data for reconstructing the recent evolution of supra glacial debris

Author:

Azzoni Roberto S1ORCID,Fugazza Davide1,Zerboni Andrea1,Senese Antonella1,D’Agata Carlo1,Maragno Davide1,Carzaniga Alessandro1,Cernuschi Massimo2,Diolaiuti Guglielmina A1

Affiliation:

1. Università degli Studi di Milano, Milan, Italy

2. Agricola 200 S.c.p.A., Milan, Italy

Abstract

Over the last decades, the expansion of supraglacial debris on worldwide mountain glaciers has been reported. Nevertheless, works dealing with the detection and mapping of supraglacial debris and detailed analyses aimed at identifying the temporal and spatial trends affecting glacier debris cover are still limited. In this study, we used different remote sensing sources to detect and map the supraglacial debris cover, to analyze its evolution, and to assess the potential of different remote-sensed image data. We performed our analyses on the glaciers of Ortles-Cevedale Group (Stelvio Park, Italy), one of the most representative glacierized sectors of the European Alps. High-resolution airborne orthophotos (pixel size 0.5 m × 0.5 m) acquired during the summer season in the years 2003, 2007, and 2012 permitted to map in detail, with an error lower than ±5%, the supraglacial debris cover through a maximum likelihood classification. Our findings suggest that over the period 2003–2012, supraglacial debris cover increased from 16.7% to 30.1% of the total glacier area. On Forni Glacier we extended these quantification thanks to the availability of UAV (Unmanned Aerial Vehicle) orthophotos from 2014 and 2015 (pixel size 0.15 m × 0.15 m): this detailed analysis permitted to confirm debris is increasing on the glacier melting surface (+20.4%) and confirms the requirement of high-resolution data in debris mapping on Alpine glaciers. Finally, we also checked the suitability of medium-resolution Landsat ETM+ data and Sentinel 2 data to map debris in a typical Alpine glaciation scenario where small ice bodies (<0.5 km2) are the majority. The results we obtained suggest that medium-resolution data are not suitable for a detailed description and evaluation of supraglacial debris cover in the Alpine scenario, nevertheless Sentinel 2 proved to be appropriate for a preliminary mapping of the main debris features.

Publisher

SAGE Publications

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3