Estimating ice albedo from fine debris cover quantified by a semi-automatic method: the case study of Forni Glacier, Italian Alps

Author:

Azzoni Roberto Sergio,Senese AntonellaORCID,Zerboni AndreaORCID,Maugeri Maurizio,Smiraglia Claudio,Diolaiuti Guglielmina AdeleORCID

Abstract

Abstract. In spite of the quite abundant literature focusing on fine debris deposition over glacier accumulation areas, less attention has been paid to the glacier melting surface. Accordingly, we proposed a novel method based on semi-automatic image analysis to estimate ice albedo from fine debris coverage (d). Our procedure was tested on the surface of a wide Alpine valley glacier (the Forni Glacier, Italy), in summer 2011, 2012 and 2013, acquiring parallel data sets of in situ measurements of ice albedo and high-resolution surface images. Analysis of 51 images yielded d values ranging from 0.01 to 0.63 and albedo was found to vary from 0.06 to 0.32. The estimated d values are in a linear relation with the natural logarithm of measured ice albedo (R  =  −0.84). The robustness of our approach in evaluating d was analyzed through five sensitivity tests, and we found that it is largely replicable. On the Forni Glacier, we also quantified a mean debris coverage rate (Cr) equal to 6 g m−2 per day during the ablation season of 2013, thus supporting previous studies that describe ongoing darkening phenomena at Alpine debris-free glaciers surface. In addition to debris coverage, we also considered the impact of water (both from melt and rainfall) as a factor that tunes albedo: meltwater occurs during the central hours of the day, decreasing the albedo due to its lower reflectivity; instead, rainfall causes a subsequent mean daily albedo increase slightly higher than 20 %, although it is short-lasting (from 1 to 4 days).

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

Reference64 articles.

1. Aoki, T., Aoki, T., Fukabori, M., Tachibana, Y., Zaizen, Y., Nishio, F., and Oishi, T.: Spectral albedo observation on the snow field at Barrow, Alaska, Polar Meteorol. Glaciol., 12, 1–9, 1998.

2. Aoki, T., Motoyoshi, H., Kodama, Y., Yasunari, T. J., Sugiura, K., and Kobayashi, H.: Atmospheric aerosol deposition on snow surfaces and its effect on albedo, Sola, 2, 13–16, 2006.

3. Arnold, N. S., Willis, I. C., Sharp, M. J., Richards, K. S., and Lawson, W. J.: A distributed surface energy-balance model for a small valley glacier. Development and testing for Haut Glacier d'Arolla,Valais, Switzerland, J. Glaciol., 42, 77–89, 1996.

4. Bolch, T.: Debris, in: Encyclopedia of Snow, Ice and Glaciers, edited by: Singh, V., Singh, P., and Haritashya, U., Springer Publications, Utrecht, the Netherlands, 186–188, 2011.

5. Brock, B. W.: An analysis of short-term albedo variations at Haut Glacier d'Arolla, Switzerland, Geogr. Ann. A, 86, 53–65, 2004.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3