Biomechanical behavior and histological organization of the three-layered passive esophagus as a function of topography

Author:

Stavropoulou Eleni A12,Dafalias Yannis F23,Sokolis Dimitrios P1

Affiliation:

1. Laboratory of Biomechanics, Academy of Athens, Greece

2. Department of Mechanics, National Technical University of Athens, Greece

3. Department of Civil and Environmental Engineering, University of California, USA

Abstract

The zero-stress state of the mucosa-submucosa and two muscle esophageal layers has been delineated, but their multi-axial response has not, because muscle dissection may not leave tubular specimens intact for inflation/extension testing. The histomechanical behavior of the three-layered porcine esophagus was investigated in this study, through light microscopic examination and uniaxial tension, with two-dimensional strain measurement in pairs of orthogonally oriented specimens. The two-dimensional Fung-type strain–energy function described suitably the pseudo-elastic tissue response, affording faithful simulations to our data. Differences in the scleroprotein content and configuration were identified as a function of layer, topography, and orientation, substantiating the macromechanical differences found. In view of the failure and optimized material parameters, the mucosa-submucosa was stronger and stiffer than muscle, associating it with a higher collagen content. A notable topographical distribution was apparent, with data for the abdominal region differentiated from that for the cervical region, owing to the existence of inner muscle with a circumferential arrangement and of outer muscle with a longitudinal arrangement in the former region, and of both muscle layers with oblique arrangement in the latter region, with thoracic esophagus being a transition zone. Tissue from the mucosa-submucosa was stronger and stiffer longitudinally, relating with a preferential collagen reinforcement along that axis, but more extensible in the orthogonal axis.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3