Strain Distribution in the Layered Wall of the Esophagus
Author:
Gregersen H.1, Lee T. C.1, Chien S.1, Skalak R.1, Fung Y. C.1
Affiliation:
1. Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093-0412
Abstract
The function of the esophagus is to move food by peristaltic motion, which is the result of the interaction of the tissue forces in the esophageal wall and the hydrodynamic forces in the food bolus. To understand the tissue forces in the esophagus, it is necessary to know the zero-stress state of the esophagus, and the stress–strain relationships of the tissues. This article is addressed to the first topic: the representation of zero-stress state of the esophagus by the states of zero stress-resultant and zero bending moment of the mucosa–submucosa and the muscle layers. It is shown that at the states of zero stress-resultant and zero bending moment, these two layers are not tubes of smaller radii but are open sectors whose shapes are approximately cylindrical and more or less circular. When the sectors are approximated by circular sectors, we measured their radii, opening angles, and average thickness around the circumference. Data on the radii, thickness-to-radius ratios, and the opening angles of these sectors are presented. Knowing the zero-stress state of these two layers, we can compute the strain distribution in the wall at any in vivo state, as well as the residual strain in the esophageal wall at the no-load state. The results of the in vivo states are compared to those obtained by a conventional approach, which treats the esophageal wall as a homogeneous material, and to another popular simplification, which ignores the residual strains completely. It is shown that the errors caused by the homogeneous wall assumption are relatively minor, but those caused by ignoring the residual strains completely are severe.
Publisher
ASME International
Subject
Physiology (medical),Biomedical Engineering
Reference38 articles.
1. Arndorfer
R. C.
, StefJ. J., DoddsW. J., LinehanJ. H., and HoganW. T., 1977, “Improved infusion system for intraluminal esophageal manometry,” Gastroenterology, Vol. 73, pp. 23–27. 2. Berry, J., Rachev, A., Moore, J. E., Jr., and Meister, J. J., 1992, “Analysis of the effect of a non-circular two-layer stress-free state on arterial wall stress,” Proc. IEEE, EMBS, Paris, pp. 65–66. 3. Brasseur
J. G.
, 1987, “A fluid mechanical perspective on esophageal bolus transport,” Dysphagia, Vol. 2, pp. 32–39. 4. Christensen
J.
, FreemanB. W., and MillerJ. K., 1973, “Some physiological characteristics of the esophagogastric junction in the opossum,” Gastroenterology, Vol. 64, pp. 1119–1125. 5. Christensen, J., 1987, “The oesophagus,” in: Physiology of the Gastrointestinal Tract, 2nd ed., Johnson, L. R., Christensen, J., Jackson, M. J., Jacobson, E. D., and Walsh, J. H., eds., Raven Press, New York, Vol. 1, pp. 595–612.
Cited by
70 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|