A wearable vibrotactile system for distributed guidance in teleoperation and virtual environments

Author:

Bai Dongming1,Ju Feng12,Qi Fei1,Cao Yanfei1,Wang Yaoyao12ORCID,Chen Bai1

Affiliation:

1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China

2. The State Key Laboratory of Fluid Power and Mechatronic Systems, Hangzhou, China

Abstract

A novel wearable vibrotactile system is proposed in this article to enhance the performance of teleoperation robot systems. Using a wearable vibrotactile glove, the proposed system guides the operator in the master–slave control through a vibrotactile-visual guidance method. Based on sensory substitution, the vibrotactile-visual combined guidance method combines vibration stimuli and visual feedback to substitute the virtual guidance force. A vibrotactile potential field is constructed in the workspace of the master-operator to calculate the frequency of the vibration stimulus. To provide vibration stimuli, a novel vibrotactile glove is designed and manufactured based on the layout of the sensitive region of human hand. As the human hand is unable to discriminate vibration stimuli of all frequencies, the vibration stimulus is discretization according to the result of the vibration discriminability experiment. At last, two contrast experiments in obstacle-free and obstacle-existing environments are conducted to verify the feasibility and effectiveness of the wearable vibrotactile system. The results show that this wearable vibrotactile system is an effective solution for guiding the operators in teleoperation and virtual environments.

Funder

National Natural Science Foundation of China

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Fundamental Research Funds for the Central Universities

Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3