Adaptive sliding mode repetitive learning control of the upper-limb exoskeleton with unknown dynamics

Author:

Zhang Yan1,Liu Jian1ORCID,Zhang Yuteng1,Zhou Ying2,Chen Lingling2

Affiliation:

1. School of Artificial Intelligence, Hebei University of Technology, Tianjin, China

2. Engineering Research Center of Intelligent Rehabilitation, Ministry of Education, Hebei University of Technology, Tianjin, China

Abstract

This article proposes a new adaptive sliding mode repetitive learning control strategy. The proposed controller can obtain satisfactory position tracking performance in the presence of unknown dynamics and external disturbance. The unknown dynamics parameters of the exoskeleton system can be estimated via an adaptive algorithm, which is used to design the sliding mode control law. Besides, the periodic external disturbance of the system can be compensated by repetitive learning to reduce the tracking error. The stability of the proposed method is demonstrated rigorous by the Lyapunov theory. Using an upper-limb exoskeleton model, simulation results demonstrate the effectiveness of the control strategy. The proposed method has a better control performance than other methods.

Funder

Natural Science Foundation of Hebei Province

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prescribed performance sliding mode control for the PAMs elbow exoskeleton in the tracking trajectory task;Industrial Robot: the international journal of robotics research and application;2023-12-05

2. Adaptive fuzzy backstepping control of flexible marine riser with uncertain parameters and input saturation constraint;Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering;2022-06-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3