Observer-based finite-time control for trajectory tracking of lower extremity exoskeleton

Author:

Wang Jie1ORCID,Liu Jiahao23,Chen Lingling23,Guo Shijie34

Affiliation:

1. Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing, China

2. School of Artificial Intelligence and Data Science, Hebei University of Technology, Tianjin, China

3. Engineering Research Center of Intelligent Rehabilitation, Ministry of Education, Tianjin, China

4. Hebei Key Laboratory of Robot Sensing and Human-Robot Interaction, Tianjin, China

Abstract

In this article, an advanced observer-based finite-time trajectory tracking controller is investigated for lower extremity exoskeleton without available joint angular velocities to improve the movement ability of dependent persons, which is robust against uncertain dynamics, human active joint torque and external disturbances. First, the Lagrange principle is applied to analyze the dynamic properties of lower extremity exoskeleton driven by artificial pneumatic muscles, and its swing phase model is established. After that, a novel finite-time extended state observer is proposed to observe the lumped disturbances and unavailable angular velocities of the lower limb exoskeleton simultaneously. Furthermore, a finite-time sliding mode controller of exoskeleton is designed based on the extended state observer, and the finite-time convergence of tracking error is rigorously demonstrated based on the Lyapunov theory. Finally, the control system simulation is established and experimental tests are conducted with a voluntary subject during flexion of wearer’s knee and hip joints, the obtained results demonstrate fast and high-precision tracking performance of the proposed approach.

Funder

China Postdoctoral Science Foundation

Natural Science Foundation of Tianjin City

Key R&D Program of Hebei Province

Natural Science Foundation of Hebei Province

Youth Foundation of Hebei Educational Committee

Graduate Innovation Foundation of Hebei Province

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3