Safety distance model for longitudinal collision avoidance of logistics vehicles considering slope and road adhesion coefficient

Author:

Guo Chen1,Wang Xiaolan1ORCID,Su Lili2,Wang Yansong1

Affiliation:

1. School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, P. R. China

2. CATARC (Tianjin) Automotive Engineering Research Institute, Tianjin, P. R. China

Abstract

With the acceleration of urbanization process, the country’s strong support for the healthy development of the logistics industry has made urban logistics become a hot topic in recent years. With the increase in the number of logistics vehicles, traffic accidents have become more frequent. Intelligent vehicle collision avoidance system is an important part of advanced safety technology. To increase veracity and practicability of logistics vehicle safety collision avoidance, this paper presents a safety distance model for longitudinal collision avoidance of logistics vehicles considering road slope and road adhesion coefficient. Based on the vehicle kinetic theory, the information of surrounding environment for the vehicle is obtained using environment sensing system adequately, a method is designed to estimate the road slope and road adhesion coefficient. Combined with vehicle dynamics and tire normal force variation, the road slope was estimated. Based on the relationship between slip rate and adhesion coefficient, the Least Square Method is used for multivariate fitting to obtain the relationship between rolling resistance coefficient and road adhesion coefficient, estimate the road adhesion coefficient, and the maximum deceleration of vehicle braking is modified. Therefore, the safety distance model is established. In order to verify the accuracy and effectiveness of the model, three cases are designed for verification: case I is verification of the safety distance model considering the slope factor; case II is verification of the safety distance model considering the road adhesion factor; case III is the safety distance verification considering both the factors of slope and road adhesion coefficient. The result shows that it is necessary to take the factors of road slope and adhesion coefficient into the safety distance model to improve the accuracy of the model.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3