Estimation of Road Adhesion Coefficient Based on Camber Brush Model

Author:

Zhang Shupei1,Zhu Hongcheng1,Zhou Haichao1,Chen Yixiang1,Liu Yue1

Affiliation:

1. School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China

Abstract

Electric vehicles, with their distinct power systems, weight distribution, and power control strategies compared to traditional vehicles, influence the pressure distribution in the tire contact area, thereby affecting the estimation of road adhesion coefficient. In electric vehicle research, tire adhesion coefficient serves as a measure of the frictional force between the vehicle and the road surface, directly impacting the vehicle’s handling performance. The accurate estimation of the adhesion coefficient aids drivers in better understanding the vehicle’s driving state. However, the existing brush models neglect differences in ground pressure distribution along the width direction of tires during tire camber, potentially leading to inaccuracies in adhesion coefficient estimation. This study proposes a camber brush tire model that considers the width-direction pressure distribution characteristics, aiming to enhance the accuracy of adhesion coefficient estimation under camber conditions. Experimental comparisons between the improved and original models reveal a significant enhancement in estimation precision. Consequently, the findings of this study provide valuable insights for deepening our understanding of tire camber dynamics and for designing control systems for electric vehicles, thereby improving vehicle stability and safety.

Funder

The National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3