Multi-objective real-time optimization energy management strategy for plug-in hybrid electric vehicle

Author:

Du Siyu1,Yang Yiyong1,Liu Congzhi2,Muhammad Fahad2

Affiliation:

1. School of Engineering and Technology, China University of Geosciences (Beijing), Beijing, People’s Republic of China

2. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, People’s Republic of China

Abstract

Plug-in hybrid electric vehicle provides remarkable results for emission reduction and fuel improvement in the current driving cycles. With the appropriate energy management strategy, the torque can be split by switching of multiple operation modes to improve fuel economy. However, in the process, not only the noticeable jerk or torque fluctuation, which may result in vibration of the drivetrain and unpleasant driving sensation, but also the frequent motor-start-engine process would be triggered, which is accompanied by extra fuel consumption and abrasion of the clutch. Therefore, high attention should be paid to reduce the excess operating times of the motor-start-engine process and take advantage of multiple operation modes to improve fuel economy in plug-in hybrid electric vehicle. To solve this problem, a multi-objective real-time optimization energy management strategy is proposed. First, the motor-start-engine dynamic model of 2-degree-of-freedom is established. Then, the motor-start-engine process is analyzed based on a large number of real-world data, and the cost of the motor-start-engine process is quantified for optimization. What’s more, the optimal torque distribution is realized through the powertrain system. Finally, the proposed strategy is verified by the simulation and experiment platform. Results show that the proposed strategy can greatly improve fuel economy, thereby reducing the excess operating times of the motor-start-engine process.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3