Approximate Global Energy Management Based on Macro–Micro Mixed Traffic Model for Plug-in Hybrid Electric Vehicles

Author:

He Zhisheng1,Peng Haiyong2ORCID,Gao Yanfei3,Yang Jun3,Hao Shenxue4,Han Guangde3,Wang Jian3ORCID

Affiliation:

1. Zhejiang Hexia Technology Co., Ltd., Shanghai 201615, China

2. School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China

3. Key Laboratory of Transportation Industry for Transport Vehicle Detection, Diagnosis and Maintenance Technology, School of Automotive Engineering, Shandong Jiaotong University, Jinan 250357, China

4. School of Transportation and Logistics Engineering, Shandong Jiaotong University, Jinan 250357, China

Abstract

A multi-scale physical process management system is presented in this paper, taking the plug-in hybrid electric vehicle system as the physical interface connecting the macro traffic system to the micro energy conversion process, with the ultimate goal of global energy management in the full temporal–spatial domain for autonomous plug-in hybrid electric vehicles. This novel method adopts a macro traffic flow model at a large time scale, in which only the initial conditions and the traffic information of key road sections are required, and a car following model at the micro scale. Furthermore, local replanning of energy management is carried out by adjusting the power threshold and the efficiency weight through the type of reinforcement learning that is closest to human learning, once a short term speed disturbance is induced by unknown disturbances in the macro traffic flow. Due to the nonlinear relationship between speed fluctuation and power fluctuation, it is necessary to map the vehicle speed and acceleration characteristics to the power characteristics, instead of directly utilizing the traffic model characterized by the speed and acceleration characteristics. The results show that novel multi-scale physical management can achieve a smaller deviation from the global optimal solution and enhanced robustness of global energy management. Additionally, close coupling between the dynamic characteristics of vehicle components and speed fluctuation ensures correct tracking of the optimized target value.

Funder

Shandong Provincial Higher School Youth Innovation Technology Project of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3